Eindige verzameling

wiskundige verzameling met een eindig aantal elementen
(Doorverwezen vanaf Eindigheid)

Een eindige verzameling is in de verzamelingenleer, een deelgebied van de wiskunde, een verzameling met een eindig aantal elementen. De verzameling

is bijvoorbeeld een verzameling met vijf elementen.

Eindige verzamelingen zijn bijzonder belangrijk in de combinatoriek, de wiskundige studie van het tellen. Veel wiskundige argumenten, waar eindige verzamelingen een rol in spelen, baseren zich op het duiventilprincipe. Dit principe stelt dat er geen injectieve functie kan bestaan van een grotere eindige verzameling naar een kleinere eindige verzameling.

Definitie en terminologie

bewerken

Een verzameling   heet eindig als er een natuurlijk getal   en een bijectie

 

bestaan. Deze definitie is equivalent met dat de kardinaliteit   van de verzameling   een natuurlijk getal is, en  . Van een eindige verzameling kunnen de elementen geschreven worden als een rij:

 .

De lege verzameling   is eindig en een kardinaliteit is  .

Een verzameling die niet eindig is wordt oneindig genoemd.

In de combinatoriek wordt een eindige verzameling met n elementen soms een n-verzameling genoemd. De verzameling (5,6,7) is bijvoorbeeld een 3-verzameling, een eindige verzameling met drie elementen.

Omdat elke eindige verzameling in bijectie is met een verzameling  , en de verzameling   te welordenen is, is elke eindige verzameling te welordenen.

Voorbeelden

bewerken

De verzameling van gehele getallen groter of gelijk aan 0 en kleiner dan 5 is eindig, aangezien de verzameling vijf elementen heeft: 0, 1, 2, 3 en 4: de kardinaliteit is vijf. Bovendien is er een bijectie tussen deze verzameling en de verzameling {1, 2, 3, 4, 5}, namelijk:

 .

De verzameling reële getallen tussen 0 en 5 (genoteerd als het interval [0, 5]) is echter niet eindig. De kardinaliteit van [0, 5] gelijk is aan  .

Alternatieve definities

bewerken

Naast de hierboven gegeven definitie van eindig bestaan er alternatieve definities van eindig.

Een verzameling   heet:

  • Tarski-eindig of T-eindig als elke deelverzameling van de machtsverzameling van   een maximaal element heeft,
  • Dedekind-eindig of D-eindig als elke injectieve afbeelding   surjectief is, oftewel als er geen bijectieve afbeelding van   naar een strikte deelverzameling van   bestaat.
  • Dedekind2-eindig of D2-eindig er een afbeelding   bestaat met de eigenschap:
 ,
  • Surjectief-eindig of S-eindig als elke surjectieve afbeelding   injectief is.

In de Zermelo-Fraenkel-verzamelingenleer, zonder gebruik te maken van het keuzeaxioma, verhouden de definities van eindig zich als volgt:

 

en

 .

Bij aanname van het keuzeaxioma is ook elke D-eindige verzameling eindig en zijn dus alle definities van eindig equivalent.

Basiseigenschappen

bewerken

Elke strikte deelverzameling van een eindige verzameling   is eindig en heeft minder elementen dan   zelf. Als gevolg daarvan kan er geen bijectie bestaan tussen een eindige verzameling   en een strikte deelverzameling van  . Dat impliceert dat elke injectie   ook surjectief is, dus   is Dedekind-eindig (Zie het kopje Alternatieve definities).

Elke injectieve functie tussen twee eindige verzamelingen met dezelfde kardinaliteit is ook een surjectieve functie, en op gelijke wijze is elke surjectie tussen twee eindige verzamelingen met dezelfde kardinaliteit ook een injectie.

De vereniging van twee eindige verzamelingen is eindig, met

 

In feite geldt:

 

Meer in het algemeen is de vereniging van elk eindig aantal van eindige verzamelingen eindig. Het Cartesisch product van eindige verzamelingen is ook eindig, met

 

Op gelijks wijze is het cartesisch product van een eindig aantal eindige verzamelingen eindig. Een eindige verzameling met n elementen heeft 2n verschillende deelverzamelingen. Dat wil zeggen dat de machtsverzameling van een eindige verzameling ook eindig is, met een kardinaliteit van 2n.

Elke deelgroep van een eindige verzameling is eindig. De verzameling van waarden van een functie, wanneer toegepast op de elementen uit een eindige verzameling, is eveneens eindig.

Alle eindige verzamelingen zijn aftelbaar, maar niet alle aftelbare verzamelingen zijn eindig. Sommige auteurs gebruik "aftelbaar" in de zin van "aftelbaar oneindig", en deze auteurs zijn dus niet noodzakelijkerwijs van mening dat eindige verzamelingen aftelbaar zijn.)

Het vrije halfrooster over een eindige verzameling is de verzameling van al haar niet-lege deelverzamelingen, waar de join operatie wordt gegeven door de vereniging van verzamelingen.

De klasse van eindige verzamelingen

bewerken

De klasse van eindige verzamelingen is een echte klasse, want de verzameling van alle eindige verzamelingen bestaat niet. Als namelijk

 

Dan bestaat ook de verzameling

 

en dan bestaat ook een verzameling   zodanig dat

 

en dus bevat   alle verzamelingen, maar er bestaat geen verzameling die alle verzamelingen bevat.

Zie ook

bewerken