Piramidegetal

Een piramidegetal is het aantal bolletjes waarmee door stapeling een piramide gevormd kan worden. Er zijn verschillende piramidegetallen te onderscheiden, waarvan de grondoppervlakken steeds verschillende regelmatige veelhoeken zijn. De getallen zijn telkens de som van de eerste n gecentreerde veelhoeksgetallen.

Een regelmatig viervlak met zijde vijf bevat 35 bolletjes. Het vijfde piramidegetal is dus 35.

Driehoekige piramidegetallenBewerken

  Zie Tetraëdergetal voor het hoofdartikel over dit onderwerp.

Zonder nadere aanduiding wordt meestal de vorm van een viervlak verondersteld, waarbij driehoeken op elkaar liggen met per laag zijden van een bol minder. Het  -de driehoekige piramidegetal   is de som van de eerste   driehoeksgetallen

 

De eerste driehoekige piramidegetallen zijn

0, 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, 364, 455, 560, 680, 816, 969, ...[1]

Vierhoekige piramidegetallenBewerken

Het  -de vierhoekige piramidegetal   is de som van de eerste   kwadraten

 

De eerste vierhoekige piramidegetallen

0, 1, 5, 14, 30, 55, 91, 140, 204, 285, 385, 506, 650, 819, ...[2]