Grootcirkelnavigatie
Grootcirkelnavigatie is het navigeren naar een bepaalde positie langs de grootcirkel (orthodroom). Voor twee verschillende punten op een boloppervlak is de kortste van de twee routes over de grootcirkel op de bol de kortste van alle routes over het boloppervlak tussen de twee punten.[1] Grootcirkelnavigatie wordt vooral toegepast bij grotere afstanden. Bij kortere afstanden weegt de geringe bekorting ten opzichte van loxodroomnavigatie niet op tegen de nadelen. Deze nadelen zijn dat naarmate de grootcirkel op hogere breedte komt - dichter bij de polen, de koers continu verandert en de grootcirkel geen rechte lijn is op de mercatorkaart.
Het grootcirkeltraject kan worden bepaald in een gnomonische kaart of met behulp van boldriehoeksmeting.
Boldriehoeksmeting
bewerkenMet boldriehoeksmeting kan de verheid (afstand) tussen twee punten worden bepaald, de koers van afvaart, de vertex en eventueel een samengesteld traject als de breedte te hoog wordt.
Verheid
bewerkenDe verheid tussen punt met breedte en lengte en punt met breedte en lengte kan bepaald worden aan de hand van boldriehoek met behulp van de eerste cosinusregel. Daarbij is de zijde het complement van de breedte , de zijde het complement van de breedte en de hoek het lengteverschil tussen vertrekpunt en bestemming .In graden geldt:
De verheid in zeemijlen wordt dan
in boogminuten.
Koers
bewerkenDe koers van afvaart kan bepaald worden met:
waarbij de koers gelijk is aan als , anders geldt .
Door en te verwisselen kan de koers van aankomst worden berekend waarbij de tegenkoers moet worden genomen van de uitkomst. De hoekverandering van de grootcirkel ten opzichte van de meridianen over en wordt convergentie genoemd.
Vertex
bewerkenDe vertex is het punt waar de grootcirkel de hoogste breedte bereikt. Dit is het punt waar de meridiaan de grootcirkel loodrecht snijdt en bij rechthoekige boldriehoeken zoals kan de Regel van Neper worden gebruikt. Het lengteverschil tussen het punt van afvaart en de vertex kan gevonden worden met:
Met de hoek ( ) en de breedte kan zowel de breedte als de lengte van worden bepaald.
Voor de lengte van de vertex geldt dan:
De breedte van de vertex is te vinden met:
Snijpunt parallel
bewerkenDe lengte waar de grootcirkel een parallel met breedte snijdt, kan gevonden worden met:
De grootcirkel snijdt de parallel bij twee lengtes:
Snijpunt meridiaan
bewerkenDe breedte waar de grootcirkel een meridiaan met lengte snijdt, kan gevonden worden met:
Passeerafstand tot een positie
bewerkenDe kortste naderingsafstand van de grootcirkel tot een bepaalde positie wordt bepaald met:
waaruit in graden volgt. Door deze met 60 te vermenigvuldigen, volgt de afstand in zeemijlen.
Samengesteld traject
bewerkenAls de grootcirkel de reis naar te hoge breedte brengt, kan een samengesteld traject (composite track) worden gevolgd. Daarbij wordt van vertrekpunt een grootcirkel gevolgd die in loodrecht raakt aan de bewuste parallel . Deze parallel wordt gevolgd tot het raakpunt met de tweede grootcirkel, waarna men deze volgt tot de bestemming .
De lengtegraad van punt kan gevonden worden met:
De lengtegraad van punt kan gevonden worden met:
De eerste grootcirkelafstand kan bepaald worden met:
De tweede grootcirkelafstand volgt uit:
De afstand is te bepalen aan de hand van loxodroomnavigatie:
Daarbij geldt dat:
Koersen kunnen bepaald worden met de eerdergenoemde methode.
Oblate sferoïde
bewerkenDe vorm van de Aarde wordt beter benaderd door een oblate sferoïde dan door een bol. Bij de bovenstaande formules wordt ervan uitgegaan dat een boogminuut overeenkomt met een zeemijl van 1852 m. In werkelijkheid is een minuut bij de polen ongeveer 1861 m en bij de evenaar 1843 m. Er zijn diverse referentie-ellipsoïdes in gebruik, afhankelijk van het gebied dat geprojecteerd moet worden. Niet de grootcirkel, maar de geodeet is hier de kortste verbinding tussen twee punten. Berekeningen worden gemaakt aan de hand van de geografische of geodetische breedte of de gereduceerde breedte . Er zijn verschillende methodes om tot een oplossing te komen voor de navigatiegrootheden. Door het Naval Oceanographic Office wordt de Andoyer-Lambert-methode gebruikt die hieronder volgt.
De geodetische breedte wordt omgezet naar de gereduceerde breedte met de formule:
waarbij de equatoriale straal is en de polaire straal van de specifieke ellipsoïde.
Verheid
bewerkenHet azimut van naar volgt uit:
De sferische afstand volgt uit:
Volgen grootcirkel
bewerkenTijdens het volgen van de grootcirkel verandert de koers voortdurend. In de praktijk wordt de grootcirkel dan ook wel opgedeeld in meerdere loxodromen. Dit kan met behulp van een koordennavigatie of via raaklijnennavigatie.
In een gnomonische kaart is de grootcirkel een rechte lijn. In deze kaart kunnen snijpunten van de grootcirkel met parallellen en meridianen bepaald worden die vervolgens kunnen worden overgezet in mercatorkaarten. Door deze punten kan een kromme getrokken worden die de grootcirkel benadert. Daarbij is de bolle zijde naar de pool van het betrokken halfrond gericht. De snijpunten kunnen ook worden berekend met de hierboven gegeven formules.
Koordennavigatie
bewerkenHet opdelen van de grootcirkel kan door in een mercatorkaart vanuit het vertrekpunt van een bepaalde afstand het snijpunt te bepalen met de grootcirkel. Tussen deze twee punten kan een koorde getrokken worden, een loxodroom. Dit kan herhaald worden tot de bestemming bereikt is. Hierbij blijft men aan de holle zijde van de grootcirkel.
Raaklijnennavigatie
bewerkenHet opdelen kan ook door telkens koersveranderingen van bijvoorbeeld een graad te maken. De koers van afvaart wordt dan gevolgd tot deze een graad verschilt van de koers van afvaart van de positie waar men zich dan bevindt. Er wordt dan een raaklijn aan een nieuwe grootcirkel gevolgd tot er opnieuw een koersverschil van een graad is bereikt. Hierbij blijft men aan de bolle zijde van de grootcirkel.
Literatuur
bewerken- Draaisma, Y; Meester, J.J.; Mulders, J.H.; Spaans, J.A. (1986): Leerboek navigatie, deel 1, De Boer Maritiem
- (1987): Admiralty Manual of Navigation, Volume 1. General Navigation, Coastal Navigation and Pilotage, The Stationery Office