In de wiskunde is een functieruimte een verzameling van een bepaalde soort functies van een verzameling naar een verzameling . Het wordt een ruimte genoemd, omdat het in vele toepassingen, een topologische ruimte, een vectorruimte of beide is.

Voorbeelden

bewerken

Functieruimten komen in verschillende deelgebieden van de wiskunde voor:

  • In de verzamelingenleer kan de machtsverzameling van een verzameling   worden geïdentificeerd met de verzameling van alle functies van   naar het interval  , weergegeven door  . Meer in het algemeen wordt de verzameling van functies   aangeduid door  .
  • In de lineaire algebra is de verzameling van alle lineaire transformaties van een vectorruimte   naar een andere vectorruimte  , over hetzelfde lichaam/veld, zelf eveneens een vectorruimte. Dit geldt ook voor verzamelingen van functies van een verzameling   naar een vectorruimte  , mits de verzameling functies gesloten is ten aanzien van optelling en scalaire vermenigvuldiging. Het kan bijvoorbeeld gaan om de  -dimensionale ruimte van polynomen tot en met graad  , of de aftelbaar-oneindigdimensionale ruimte van alle polynomen, of de overaftelbaardimensionale ruimte van alle reële functies, steeds op een vast reëel interval of de hele reële ruimte.
  • In de functionaalanalyse wordt de verzameling van alle functies van de natuurlijke getallen naar een verzameling   een rijruimte genoemd. De rijruimte bestaat uit de verzameling van alle mogelijke rijen van elementen van  .