Kaprekargetal

Een Kaprekargetal is in de wiskunde een geheel getal dat de hieronder beschreven eigenschap bezit. De Kaprekargetallen zijn genoemd naar de Indiase wiskundige D. R. Kaprekar (1905–1986).

Een geheel getal heet, bij een gegeven grondtal, een Kaprekargetal als het kwadraat ervan in twee getallen kan worden gesplitst die, wanneer bij elkaar opgeteld, weer het originele getal opleveren. Bijvoorbeeld, het 3-cijferige getal 703 is, bij het gebruikelijke grondtal 10, een Kaprekargetal, omdat 7032 = 494209, en 494209 gesplitst kan worden in 494 en 209, en 494 + 209 = 703.

DefinitieBewerken

Het natuurlijke getal k heet een Kaprekargetal bij het grondtal  , als er getallen   zijn, met  , zo dat:

 
 

Kaprekargetallen t/m 533170Bewerken

De eerste 39 Kaprekargetallen bij het grondtal 10 zijn:[1]

1, 9, 45, 55, 99, 297, 703, 999, 2223, 2728, 4879, 4950, 5050, 5292, 7272, 7777, 9999, 17344, 22222, 38962, 77778, 82656, 95121, 99999, 142857, 148149, 181819, 187110, 208495, 318682, 329967, 351352, 356643, 390313, 461539, 466830, 499500, 500500, 533170

De eerste 9 hiervan controleren:

 
 
 
 
 
 
 
 
 

Zoals te zien is, lijken de getallen   allen kaprekargetallen. Dat kan ook bewezen worden. Stel

 ,

dan is

 ,

dus

 

en

 

Inderdaad is

 

en

 

6174Bewerken

  • Voor 6174, de constante van Kaprekar geldt dat een gegeven rij getallen, gedefinieerd met een serie bewerkingen op die getallen, steeds bij 6174 uitkomt en daarna hetzelfde blijft.