Ceva-driehoek

De Ceva-driehoek van een punt P ten opzichte van een driehoek ABC is de driehoek XYZ gevormd door de snijpunten met de zijden van ABC van de lijnen door P en de hoekpunten van ABC. Deze naam vindt zijn oorsprong in de stelling van Ceva, naar de Italiaanse wiskundige Giovanni Ceva.

CEVA.PNG

Gegeven een driehoek ABC en een punt P; laat

  • X het snijpunt zijn van de lijnen AP en BC,
  • Y het snijpunt zijn van de lijnen BP en AC,
  • Z het snijpunt zijn van de lijnen CP en AB,

dan is de driehoek XYZ de Ceva-driehoek van P.

CoördinatenBewerken

Heeft punt P barycentrische coördinaten (u:v:w) ten opzichte van ABC, dan zijn de barycentrische coördinaten van de hoekpunten van de Ceva-driehoek als volgt:

  •  
  •  
  •  

EigenschappenBewerken

  • Een anti-Ceva-driehoek van een driehoek ABC ten opzichte van een punt P is de inverse van de Ceva-driehoek van ABC. Het is de driehoek zodat de Ceva-driehoek ervan ABC is. ABC, de Ceva-driehoek en de anti-Ceva-driehoek hebben dezelfde perspectiviteitsas.
  • De hoekpunten van een Om-Ceva-driehoek van ABC liggen op dezelfde omgeschreven cirkel als de hoekpunten van ABC zelf. De drie lijnen tussen de corresponderende hoekpunten van ABC en van de Om-Ceva-driehoek van ABC snijden elkaar in één punt P.
  • Een kegelsnede door de hoekpunten van de Ceva-driehoek van een punt P snijdt de zijden van een driehoek elk in nog een punt. Deze vormen weer de hoekpunten van een Ceva-driehoek van een punt Q. Is de kegelsnede een cirkel, dan heet Q de Ceva-cirkel verwant van P.