Koppel (wiskunde)

wiskunde
(Doorverwezen vanaf Geordend paar)

Het begrip koppel of ook geordend paar stamt uit de wiskundige verzamelingenleer. Een koppel is een 2-tupel, dit is een rij van twee wiskundige objecten. Een geordend paar of koppel komt met een element van een tweeplaatsige relatie overeen. De gebruikelijke notatie voor een geordend paar of een koppel is .[1]

Het meest voorkomende voorbeeld van een geordend paar of koppel is voor de plaatsaanduiding in een cartesisch coördinatenstelsel. Het argument op de eerste plaats is er daarbij voor de -coördinaat en het argument op de tweede plaats voor de -coördinaat.

KenmerkenBewerken

De kenmerkende eigenschap van een koppel is dat het twee elementen opsomt in een welbepaalde volgorde. Zij   een element van een verzameling  , en   een element van een verzameling  , dan noteert men het geordend paar als  . Het koppel   is gelijk aan het koppel   dan en slechts dan als   en  . Het koppel   is niet hetzelfde als het paar  : bij dit laatste speelt de volgorde van   en   geen rol. Er geldt altijd:

 

maar

 

tenzij  . In dit laatste geval spreekt men van een identiek koppel.

Soms wordt ook de notatie met schuine haken   gehanteerd, bijvoorbeeld om het onderscheid te maken met een open interval op een lijn of op de reële getallenlijn. Soms wordt de komma vervangen door een kommapunt, met name als de elementen   en   decimale getallen zijn, bijvoorbeeld

 

voor het koppel dat bestaat uit het natuurlijke getal een en de breuk drie tweede.

Grafisch wordt een koppel meestal voorgesteld als een paar punten, verbonden door een boog met een pijltje. Het pijltje geeft de zin aan van de oorsprong naar het doel.

Bij een identiek koppel vallen begin- en eindpunt samen. De boog wordt dan een lus zonder pijltje.

DefinitieBewerken

Handboeken over naïeve verzamelingenleer mijden een formele definitie en hanteren de kenmerkende eigenschap als een uitdrukkelijk of verzwegen axioma. In wiskundige modellen waarin alles een verzameling is, wordt het koppel   gedefinieerd als de verzameling  . Deze definitie heeft enige formele elegantie en maakt de kenmerkende eigenschap eenvoudig bewijsbaar, maar ze is voor de intuïtie eerder hinderlijk dan behulpzaam.

De verzameling van alle mogelijke koppels waarvan het eerste lid tot een gegeven verzameling   behoort, en het tweede lid tot een gegeven verzameling  , noemt men het cartesisch product van   en  , genoteerd als  .

MeerplaatsigheidBewerken

Relaties worden in de de theoretische informatica gebruikt om een eindige verzameling  -tupels, waarbij   een vast getal is dat meer dan twee kan zijn, die deel uitmaken van een gegeven cartesisch product   dat door verzamelingen is samengesteld, die niet noodzakelijk eindig zijn.

Koppels of geordende paren komen overeen met de elementen van een tweeplaatsige relatie. Dat zijn de relaties die in de praktijk het meeste worden gebruikt, maar relaties met meer dan twee argumenten, met een hogere plaatsigheid dan twee kunnen dus ook worden gedefinieerd. Op deze manier zijn er tupels met meer dan twee argumenten te definiëren: 'tripels', tripletten of geordende drietallen, 'quadrupels', geordende viertallen, 'quintupels', 'sextupels', enzovoort. Bij een algemeen aantal elementen   spreekt men van een  -tupel of kortweg tupel.

Als een formele definitie van een tripel nodig is, dan kan men afspreken dat

 

De definitie is ook minder belangrijk dan de kenmerkende eigenschap:

  en  

Recursief wordt een  -tupel gedefinieerd via een  -tupel

 ,

met weer de definitie dat twee tupels alleen aan elkaar gelijk zijn als de overeenkomstige elementen twee aan twee aan elkaar gelijk zijn in de aangegeven volgorde.