Brownse brug

stochastisch proces

Een brownse brug is een speciaal stochastisch proces dat wordt voortgebracht door een brownse beweging (ook Wienerproces genoemd). In tegenstelling daarmee heeft een brownse brug een eindige tijdshorizon met een deterministische (niet toevallige) eindwaarde, die gewoonlijk gelijk is aan de beginwaarde. De brownse brug wordt toegepast om toevallige ontwikkelingen te modelleren in data waarvan de waarde op twee tijdstippen bekend is.

Twee onderling onafhankelijke Brownse bruggen met een tijdshorizon 1. Als marginaal betrouwbaarheidsinterval is het dubbele van de standaarddeviatie (grijze ellips) aangegeven

DefinitieBewerken

Zij   een standaard Wienerproces en   een vast gekozen tijdstip, dan heet het proces:

 

Brownse brug met lengte  .

Het enige verschil is dat als voorwaarde geldt dat   op tijdstip   weer nul wordt. De kansverdeling van   is dus op elk moment   gegeven door de voorwaardelijke kans:

 .

In het bijzonder geldt natuurlijk dat  . Vandaar de naam van het proces: Er wordt een brug geslagen tussen 0 en   waar men vervolgens weer "vaste grond onder de voeten" heeft.

EigenschappenBewerken

Een aantal fundamentele eigenschappen van het Wienerproces blijven behouden bij de overgang naar een brownse brug, andere gaan verloren:

  • De brownse brug heeft bijna zeker continu nergens differentieerbare paden.
  • Voor alle   is de verwachtingswaarde van de brownse brug  .
  • Voor de covariantie geldt:  .
  • In het bijzonder geldt dus voor de variantie:  .
  • De brownse brug is een Markovproces, maar in tegenstelling tot de brownse beweging geen lévyproces en ook geen martingaal.