Cumulant

In de kansrekening worden de cumulanten van een stochastische variabele of een kansverdeling voortgebracht door de cumulantgenererende functie , gedefinieerd als de natuurlijke logaritme van de momentgenererende functie , mits deze bestaat; dan is:

De -de cumulant is dan gedefinieerd door:

.

Directe berekening leert:

en

.

Noemt men en , dan is de Maclaurinreeks-ontwikkeling van de cumulantgenererende functie:

Op alternatieve wijze kunnen cumulanten ook gedefinieerd worden in termen van de karakteristieke functie

Er geldt:

VoorbeeldenBewerken

Voor de normale verdeling met parameters   en   is de momentgenererende functie:

 

zodat de cumulantgenererende functie gelijk is aan

 

De cumulanten zijn dus:

  en voor  

Alle cumulanten van orde groter dan 2 zijn gelijk aan 0, een eigenschap die kenmerkend is voor de normale verdeling.

Voor de poissonverdeling is

 ,

dus

 

Alle cumulanten zijn aan elkaar gelijk; voor alle   is:

 

EigenschappenBewerken

Invariantie voor verschuivingenBewerken

Cumulanten worden wel als semi-invarianten van de kansdichtheid   aangeduid, aangezien ze, met uitzondering van  , bij een verschuiving van de verwachtingswaarde niet veranderen. Voor een willekeurige constante   geldt:

 

en voor  

 

HomogeniteitBewerken

Die  -de cumulant is homogeen van de graad  . Voor een willekeurige constante   geldt:

 

AdditiviteitBewerken

Als   en   onderling onafhankelijke stochastische variabelen zijn, geldt, mits de cumulanten bestaan:

 

Analoog geldt voor een  -tal onderling onafhankelijke stochastische variabelen  

 

Deze eigenschappen volgen direct uit de definitie met behulp van de karakteristieke functie, aangezien de karakteristieke functie van de bovengenoemde sommen het product is van de afzonderlijke karakteristieke functies.

Aantal cumulanten ongelijk aan 0Bewerken

In het voorbeeld zijn slechts de eerste twee cumulanten van de normale verdeling ongelijk aan 0. Trivialerwijze zijn ook alle cumulanten behalve de eerste voor een ontaarde verdeling gelijk aan 0. Belalve deze twee gevallen bestaat er geen andere verdeling met slechts eindig veel cumulanten ongelijk aan 0

GeschiedenisBewerken

Cumulanten en hun eigenschappen werden in 1889 voor het eerst beschreven dor de Deense wiskundige Thorvald Nicolai Thiele in een in het Deens uitgegeven boek.[1] Daardoor bleven de resultaten lange tijd onbekend, zodat Felix Hausdorff nog in 1901 deze kengetallen in een artikel als door hem 'nieuw ingevoerd' beschreef.[2]

LiteratuurBewerken

ReferentiesBewerken

  1. Thorvald Nicolai Thiele: Forelæsninger over almindelig Iagttagelseslære: Sandsynlighedsregning og mindste Kvadraters Methode, Kopenhagen 1889.
  2. Felix Hausdorff: Gesammelte Werke, Band V: Astronomie, Optik und Wahrscheinlichkeitstheorie. 2006, ISBN 978-3-540-30624-5, S. 544, 577.