Boltzmann-verdeling

De Boltzmann-verdeling of Boltzmann-statistiek (ook wel Gibbs-Boltzmann-verdeling genoemd) is een in de scheikunde, natuurkunde en wiskunde toegepaste kansverdeling die de relatieve bezettingsgraad van verschillende toestanden in een systeem weergeeft. Een bijzonder geval van deze verdeling is de snelheidsverdeling van gasdeeltjes in een ideaal gas, die wordt weergegeven door de Maxwell-Boltzmann-verdeling.

KansfunctieBewerken

Verondersteld wordt dat een systeem zich in verschillende toestanden   kan bevinden, telkens met een bijhorende energie  . De kans   dat het systeem in de toestand   wordt aangetroffen, is evenredig met de exponentiële functie  , en wordt dus gegeven door

 

waarin   de normalisatiefactor is:

 

De parameter   wordt in de thermodynamica concreet ingevuld als:

 

met   de Boltzmannconstante.

BezettingsgraadBewerken

als deeltjes in een bepaald systeem de mogelijkheid hebben zich te verdelen over de toestanden   en  , dan verhouden de bezettingsgraden   en   zich als

 ,

dus afhankelijk van het energieverschil   van beide toestanden. Daarin is   een correctiefactor voor de ontaarding in het systeem, die weer gegeven wordt door

 

Deze factoren kunnen via kwantummechanische berekeningen worden verkregen.

Toepassing in de spectroscopieBewerken

De Boltzmann-verdeling wordt gebruikt bij tal van klassieke en kwantummechanische systemen. Zo wordt de verdeling in de spectroscopie veelvuldig aangewend, omdat de bezettingsgraden van de verschillende energieniveaus belangrijke implicaties hebben op absorptie- en emissieprocessen. In het specifieke geval van spectroscopie wordt meer belang gehecht aan overgangen vanuit de grondtoestand met energie E0. Zodoende wordt de Boltzmann-verdeling herleid tot

 

Aangezien het energieverschil moet overeenkomen met de energie van een kwantumdeeltje dat geabsorbeerd of geëmitteerd dient te worden, kan de vergelijking worden herschreven tot

 

Daaruit is te zien dat de relatieve bezetting van een hoger energieniveau (de aangeslagen toestand) wordt bepaald door het energieverschil ten opzichte van het grondniveau en de temperatuur   Het aantal deeltjes in de aangeslagen toestand is groter naarmate het energieverschil tussen de relevante toestanden kleiner is of naarmate de temperatuur hoger is. In het geval van bijvoorbeeld NMR-spectroscopie is het energieverschil tussen twee opeenvolgende toestanden zo klein dat de beide energieniveaus bijna gelijk bezet zijn. Dat zou ertoe leiden dat uit NMR-analyses geen bruikbare informatie zou kunnen gehaald worden, omdat bijna geen overgangen zullen plaatsgrijpen. Toch kunnen de energieniveaus gemanipuleerd worden: door aanleggen van een extern magnetisch veld zal het energieverschil groter worden en zal de populatie van beide niveaus significant wijzigen. Dit leidt ertoe dat overgangen tussen beide toestanden mogelijk worden en dat hieruit informatie met betrekking tot de moleculaire structuur kan verkregen worden.

Zie ookBewerken