Hoofdmenu openen

In de kansrekening en de statistiek is de verdelingsfunctie, ook aangeduid als cumulatieve kansverdelingsfunctie of cumulatieve distributiefunctie (cdf), van een reëelwaardige stochastische variabele de functie waarmee de verdeling van de stochastische variabele beschreven of vastgelegd wordt. De verdelingsfunctie bestaat altijd en voor elke gebeurtenis die de stochastische variabele betreft kan daarmee de kans op die gebeurtenis bepaald worden. Populair gezegd worden alle kansen betreffende de stochastische variabele bepaald door de verdelingsfunctie.

Elke functie die opgevat kan worden als verdelingsfunctie van een stochastische variabele, wordt ook verdelingsfunctie genoemd. Het betreft dan een functie met de hieronder aangeduide eigenschappen.

DefinitieBewerken

De verdelingsfunctie van de stochastische variabele   op de kansruimte  , is de functie  , gedefinieerd voor   door:

 

(Let op het verschil tussen   en  .)

De waarde   van de verdelingsfunctie van   in het punt  , is dus de (cumulatieve) kans op waarden van   kleiner dan of gelijk aan  .

EigenschappenBewerken

Een verdelingsfunctie is een monotoon stijgende, rechtscontinue functie   met domein   en bereik  , waarvoor geldt:

 

en

 .

Rechtscontinu betekent:

 .

Monotoon stijgend betekent:

 .


De verdelingsfunctie   en de verdeling   van een stochastische variabele   zijn eeneenduidig met elkaar verbonden door de relatie:

 

Als de verdelingsfunctie absoluut continu is, dan is ze de integraal van een kansdichtheid. Als de verdeling singulier is, dan is de verdelingsfunctie soms de integraal van een discrete kansfunctie. In het algemeen garandeert de Stelling van Radon-Nikodym-Lebesgue (zie wederzijds singuliere maten) dat de verdeling de som is van een absoluut continu en een singulier gedeelte.

Van de bekende kansverdelingen bestaan tabellen, waarin meestal de verdelingsfunctie getabelleerd is. Uit zo'n tabel kan men dus eenvoudig van die verdeling de linker overschrijdingskans aflezen.

VoorbeeldBewerken

Een willekeurig getal   tussen 0 en 1 wordt beschreven door de kansdichtheid:

  voor   en 0 elders.

De bijbehorende verdelingsfunctie is:

 

Om de kans te bepalen dat   tussen 0,33 en 0,44 ligt, berekenen we:

 .

Zie ookBewerken