Gebruiker:Oscar Zariski/Zandbak/Moderne natuurkunde

Moderne natuurkunde bewerken

Op het einde van de 19de eeuw werd de natuurkunde geconfronteerd met twee paradoxen die tot twee afzonderlijke wetenschappelijke omwentelingen zouden leiden.

Relativiteit bewerken

De eerste paradox was dat de wetten van Maxwell een correcte beschrijving gaven van lichtgolven, op voorwaarde dat er in de natuur een notie van absolute stilstand en beweging zou bestaan. Sinds Galileo Galilei gingen natuurkundigen ervan uit dat de wetten van de mechanica dezelfde moesten zijn voor een stilstaande waarnemer als voor een waarnemer die zich eenparig rechtlijnig door de ruimte beweegt; een beginsel dat later relativiteit van de beweging zou worden genoemd. Na verschillende pogingen om de wetten van Maxwell aan te passen, kwam Albert Einstein in 1905 met de revolutionaire veronderstelling dat de begrippen tijdsduur, lengte en snelheid afhankelijk waren van de waarnemer, en dat de lichtsnelheid (in vacuum) voor alle waarnemers dezelfde is, zelfs voor waarnemers die ten opzichte van elkaar bewegen. De relativiteitstheorie houdt zich bezig met verschijnselen bij snelheden dicht onder de lichtsnelheid (3 × 108 m/s) en de fysica op zeer grote schaal in de kosmologie. Onderscheiden worden hier nog de speciale relativiteitstheorie, die zich beperkt tot eenparige bewegingen (dat wil zeggen met constante snelheid en constante richting), en de algemene relativiteitstheorie, die zich vooral met versnellingen en zwaartekracht bezighoudt.

Kwantumtheorie bewerken

De tweede paradox kwam voort uit de confrontatie van de enerzijds de wetten van de thermodynamica, en de daaruit volgende energieverdeling in een hete middenstof, en anderzijds de waarnemingen van de kleur van een gloeiend voorwerp. De wet van Rayleigh-Jeans voorspelde correct de energieverdeling over lange golflengten, maar schoot fundamenteel tekort in de schatting van de energieverdeling bij korte golflengten (hoge energieën): de ultravioletcatastrofe. Max Planck loste dit in 1900 op door de voor die tijd revolutionaire veronderstelling dat licht niet continu, maar in kleine pakketjes ("kwanta") wordt uitgezonden waarvan de grootte evenredig is met de frequentie van het licht.

De kwantumtheorie werd later door Erwin Schrödinger, Werner Heisenberg, Paul Dirac en anderen ontwikkeld tot de kwantummechanica. Het is thans onmogelijk een realistische beschrijving te verkrijgen van het gedrag van de materie op subatomaire schaal, zoals in de kernfysica of algemener de deeltjesfysica, zonder gebruik te maken van de kwantummechanica en de kwantumveldentheorie. Kernfysica is de natuurkunde van de elementaire deeltjes waaruit een atoom en de atoomkern bestaat. Dat zijn niet alleen protonen, neutronen en elektronen, maar ook vele andere kleine deeltjes zoals het positron. Protonen en neutronen bestaan op hun beurt uit quarks. Sommige van die deeltjes leven zeer kort (hebben een „korte halveringstijd”). De kernfysica heeft onder andere geleid tot de uitvinding van de atoombom, maar ook van de kernreactor en de nucleaire geneeskunde.

De kwantumveldentheorie verzoent de speciale relativiteit met de kwantummechanica door de interacties tussen deeltjes en velden te beschrijven. In de jaren 1960 slaagden theoretische en experimentele natuurkundigen erin een geünificeerde theorie van de elektrozwakke wisselwerking (elektromagnetisme en zwakke wisselwerking) te formuleren. De kwantumchromodynamica is de veldentheorie van de sterke kernkracht.

Unificatie bewerken

Tot op heden (2021) bestaat er geen algemeen aanvaarde theorie die de vier fundamentele natuurkrachten samenbrengt. Het doel is de kwantumveldentheorie te verzoeken met de algemene relativiteitstheorie. De snaartheorie en de M-theorie zijn geloofwaardige pogingen die nog omstreden zijn, en onvoldoende uitgewerkt en getest om algemeen te worden aanvaard.