Operatornorm

In de functionaalanalyse, een deelgebied van de wiskunde, is de operatornorm een middel om de "grootte" van bepaalde lineaire operatoren te meten. Formeel is het een norm die is gedefinieerd op de ruimte van begrensde lineaire operatoren tussen twee gegeven genormeerde vectorruimten. De operatornorm hangt af van de normen in deze ruimten.

DefinitieBewerken

De operatornorm   van een lineaire afbeelding   van de genormeerde vectorruimten   en   kan op verschillende equivalente wijzen gedefinieerd worden. Voor  :

  1.  
  2.  
  3.  
  4.  

In het triviale geval   zijn de verzamelingen in de derde en vierde definitie leeg, en geven de eerste twee definities de waarde nul.

Als de uitkomst eindig is, wordt de operator begrensd genoemd. Dit is voor lineaire operatoren equivalent met continu zijn.

Een lineaire operator van en naar een eindigdimensionale vectorruimte wordt gerepresenteerd door een matrix.   kan dan gelezen worden als vermenigvuldiging van een matrix en een vector. Deze operator is bij elk tweetal normen begrensd/continu.