Kalman-filter: verschil tussen versies

1.124 bytes toegevoegd ,  9 jaar geleden
uitleg in simpele taal
k (r2.7.3) (Robot: gewijzigd: uk:Фільтр Калмана)
(uitleg in simpele taal)
Het '''Kalman-filter''' is een rekenmethode waarmee reeksen van meet- of andere gegevens van willekeurige verstoringen (ruis) kunnen worden ontdaan. De rekenmethode is in [[1960]] ontwikkeld door [[Rudolph Emil Kálmán]] en wordt sindsdien op vele manieren toegepast. De werking is te vergelijken met de [[kleinste-kwadratenmethode]] die gebruikt wordt om de beste lijn door een aantal punten te vinden, met als bijkomend groot voordeel dat niet alle waardes vooraf bekend hoeven te zijn. Het Kalman-filter is daarom bijzonder geschikt om in "real-time" toegepast te worden, waarbij de uitkomst steeds de "best passende" benadering is.
 
==Hoe het werkt==
Het Kalman-filter gaat uit van een proces dat wiskundig te [[model (wetenschap)|modeleren]] is. De uitkomst van het model voorspelt de te bepalen waarde op elk gewenst moment. De daadwerkelijke meting wordt met de vooorspelde waarde verrekend tot een [[gewogen gemiddelde]]. Deze uitkomst is de gefilterde waarde en wordt meteen ook gebruikt om het procesmodel aan te passen.
 
Als voorbeeld kunnen de [[snelheid]], [[koers (richting)|koers]] en [[locatie|positie]] van een voertuig gebruikt worden om een toekomstige positie te voorspellen. Als er op enig tijdstip een [[Global positioning system|gps]]-meting van een nieuwe positie gedaan wordt zal deze waarschijnlijk niet precies gelijk zijn aan de voorspelde positie. Met de weegfactor wordt dan een "compromis"-positie bepaald, waaruit ook weer een nieuwe snelheid en koers herleid worden. Deze nieuwe positie, koers en snelheid worden daarna gebruikt voor volgende voorspellingen. Als de gemeten waarde zwaar meetelt en de voorspelde waarde niet levert dat een "licht" filter op, hoe zwaarder de modelwaarde meetelt hoe trager het filter reageert.
 
==Toepassingen==
16.400

bewerkingen