Symmetrisch verschil

(Doorverwezen vanaf Symmetrische verschil)
Venndiagram van het symmetrische verschil (rood) van twee verzamelingen

In de verzamelingenleer is het symmetrische verschil van twee verzamelingen de verzameling die de elementen bevat die tot een van de twee verzamelingen behoren, maar niet tot beide. Het symmetrische verschil van A en B wordt genoteerd als A Δ B. Het symmetrische verschil komt overeen met het "uitsluitende of", dat wil zeggen met de operator XOR.

DefinitieBewerken

Het symmetrische verschil   van de verzamelingen   en   is de verzameling gedefinieerd door:

 

Het symmetrische verschil kan ook geschreven worden als:

 
 
 

EigenschappenBewerken

Commutativiteit:

 

Associativiteit

 

De lege verzameling is neutraal element

 

Elke verzameling is z'n eigen tegengestelde:

 

Samen betekenen deze eigenschappen dat de deelverzamelingen van een gegeven verzameling een abelse groep vormen met het symmetrische verschil als groepsbewerking. En omdat elk element z'n eigen tegengestelde is, vormen de deelverzamelingen een vectorruimte over het eindige lichaam   met twee elementen.

Doorsnede is distributief:

 

zodat de deelverzamelingen zelfs een ring vormen met het symmetrische verschil als optelling en doorsnede als vermenigvuldiging.

GeneralisatieBewerken

In elke booleaanse algebra kan op analoge wijze als voor verzamelingen het symmetrische verschil van twee elementen gedefinieerd worden:

 

Deze bewerking heeft dan dezelfde eigenschappen als voor verzamelingen.


Zie ookBewerken