Kalman-filter: verschil tussen versies

1 byte toegevoegd ,  1 jaar geleden
geen bewerkingssamenvatting
Geen bewerkingssamenvatting
Geen bewerkingssamenvatting
[[File:Rudolf Kalman.jpg|thumbnail|[[Rudolf Emil KalmanKálmán]], mede-bedenkermedebedenker en ontwikkelaar van het Kalmankalman-filter]]
Het '''Kalmankalman-filter''' is een rekenmethode waarmee reeksen van meet- of andere gegevens van willekeurige verstoringen ([[Ruis (signaal)|ruis]]) kunnen worden ontdaan. De rekenmethode is in [[1960]] ontwikkeld door de Hongaar [[Rudolf Emil Kálmán]] en wordt sindsdien op vele manieren toegepast. De werking is te vergelijken met de [[kleinste-kwadratenmethode]] die gebruikt wordt om de beste lijn door een aantal punten te vinden, met als bijkomend groot voordeel dat niet alle waardes vooraf bekend hoeven te zijn. Het Kalmankalman-filter is daarom bijzonder geschikt om in ''real-time'' toegepast te worden, waarbij de uitkomst steeds de best passende benadering is.
 
==Hoe het werkt==
Het Kalmankalman-filter gaat uit van een proces dat wiskundig te [[model (wetenschap)|modelleren]] is. De uitkomst van het model voorspelt de te bepalen waarde op elk gewenst moment. De daadwerkelijke meting wordt met de voorspelde waarde verrekend tot een [[gewogen gemiddelde]]. Deze uitkomst is de gefilterde waarde en wordt meteen ook gebruikt om het procesmodel aan te passen.
 
Als voorbeeld kunnen de [[snelheid]], [[koers (richting)|koers]] en [[locatie|positie]] van een voertuig gebruikt worden om een toekomstige positie te voorspellen. Als er op enig tijdstip een [[Global positioning system|gps]]-meting van een nieuwe positie gedaan wordt zal deze waarschijnlijk niet precies gelijk zijn aan de voorspelde positie. Met de weegfactor wordt dan een compromis-positie bepaald, waaruit ook weer een nieuwe snelheid en koers herleid worden. Deze nieuwe positie, koers en snelheid worden daarna gebruikt voor volgende voorspellingen. Als de gemeten waarde zwaar meetelt en de voorspelde waarde niet, dan levert dat een licht filter op, hoe zwaarder de modelwaarde meetelt hoe trager het filter reageert.
 
==Toepassingen==
* [[Navigatie]]systemen gebruiken Kalmankalman-filters om uit de vele metingen, die allemaal een afwijking hebben, de meest waarschijnlijke positie of koers te bepalen.
* Metingen in de [[procesindustrie]] waar veel storende invloeden zijn kunnen worden opgeschoond, waarna het proces ermee bijgestuurd kan worden.
* Een Kalmankalman-filter kan gebruikt worden om een trend te ontdekken in een schijnbaar willekeurig variërende [[beurshandel|beurskoers]].
* Een methode voor het voorspellen van een [[weerbericht]].
 
520.979

bewerkingen