Viervector: verschil tussen versies

1 byte verwijderd ,  3 jaar geleden
k
geen bewerkingssamenvatting
Geen bewerkingssamenvatting
kGeen bewerkingssamenvatting
In de klassieke mechanica treedt een soortgelijk fenomeen op. Het is duidelijk dat men een systeem kan beschrijven in verschillende coördinatenstelsels. Er is dus geen absolute betekenis te geven aan wat men de x-, y- en z-coördinaat noemt. In de mechanica wordt vaak gebruikgemaakt van [[Vector (wiskunde)|vectoren]]: veel grootheden, zoals snelheid, positie, kracht, e.d. die op natuurlijke wijze drie componenten hebben. Afzonderlijk hebben de componenten geen fysische betekenis, aangezien een andere keuze van assenstelsel de waardes van de componenten van de vector zal veranderen. Als geheel is een vector wel zinvol, en is dus eigenlijk mede gedefinieerd door hoe de componenten veranderen onder een verandering van assenstelsel.
 
Het begrip viervector generaliseert dit begrip, ruwweg door aan vectoren ook een tijdstijd-component toe te voegen. Het eenvoudigste voorbeeld is de aanduiding van een plaats. In de klassieke mechanica gebeurt dit door drie coördinaten <math>x,y</math> en <math>z</math> op te geven. Dat beschrijft een bepaalde positie in de ruimte, zonder een tijdstip te specifiëren. Een ''positie-viervector'' (ruimtetijdpositie) ziet er als volgt uit:
:<math>(ct, x, y, z)</math>
en bepaalt dus een positie <math>(x,y,z)</math> op een welbepaald tijdstip <math>t</math>. Anders uitgedrukt: deze vector beschrijft de positie van een [[gebeurtenis (relativiteit)|gebeurtenis]] in de ruimtetijd. In de uitdrukking hierboven is <math>c</math> de [[lichtsnelheid]], die als factor garandeert dat de verschillende componenten van de viervector alle dezelfde eenheid lengte hebben. Het is voor een bondige notatie gebruikelijk een vector <math>(x,y,z)</math> te schrijven als <math>x^i</math>, met <math>i=1,2,3</math>. Analoog noteert men een positie-viervector als
804

bewerkingen