Nevelvat: verschil tussen versies

Verwijderde inhoud Toegevoegde inhoud
Fkoetsve (overleg | bijdragen)
Het plaatje van het positron dan wel de tekst was verkeerd om: op het plaatje komt het positron van beneden
Xqbot (overleg | bijdragen)
k robot Erbij: ko:안개 상자; cosmetische veranderingen
Regel 1:
[[AfbeeldingBestand:PositronDiscovery.jpg|thumb|De eerste foto van een [[positron]] in een nevelvat.]]
Een '''nevelvat''', ook wel '''nevelkamer''' genoemd, of '''Wilsonvat''', naar de uitvinder, [[Charles Thomson Rees Wilson]], is een wetenschappelijk instrument waarmee sporen van kleine deeltjes (bijvoorbeeld [[elektron]]en of [[alfastraling|alfadeeltjes]]) zichtbaar kunnen worden gemaakt. Het nevelvat is van groot belang geweest voor de ontwikkeling van de [[deeltjesfysica]]. Dankzij het nevelvat konden bijvoorbeeld bij de studie van het [[Compton-effect]] de door de [[röntgenstraling]] verstrooide elektronen zichtbaar worden gemaakt. Ook het [[positron]] werd voor het eerst waargenomen met behulp van een nevelvat. Het spoor van een positron is te zien op de foto rechts, misschien wel de meest beroemde foto die ooit gemaakt is met behulp van een nevelvat (zie [[Nevelvat#Het positron als voorbeeld|de uitleg]] hieronder voor meer informatie). In de loop van de [[20e eeuw|twintigste eeuw]] werd de wetenschappelijke functie van het nevelvat overgenomen door nauwkeuriger en veelzijdiger instrumenten als het [[bellenvat]], de [[vonkenkamer]] en tenslotte de [[dradenkamer]]. Het instrument is nog steeds populair bij hobbyisten en als demonstratie in het onderwijs, waarschijnlijk vooral vanwege de eenvoudige constructie.
 
== Werking en gebruik ==
Het nevelvat is in zijn meest eenvoudige vorm een afgesloten vat, gevuld met een [[oververzadiging|oververzadigde]] en [[superkoeling|onderkoelde]] damp. Wanneer een invallend deeltje (bijvoorbeeld een elektron, een [[muon]] of een alfadeeltje) met het mengsel in het vat wisselwerkt, kan het een aantal van de [[atoom|atomen]] op zijn pad [[ionisatie|ioniseren]]. De ontstane [[ion (deeltje)|ionen]] trekken de omliggende dampmoleculen aan en verhogen daardoor lokaal de dampdichtheid, wat onder de omstandigheden in het vat onmiddellijk tot [[condensatie]] van de damp leidt (de ionen werken als [[condensatiekern]]en). Hierdoor wordt een spoortje van nevel zichtbaar langs het pad van het invallende deeltje. Uit de eigenschappen van deze spoortjes kan men informatie aflezen over het waargenomen deeltje. Een relatief zwaar alfadeeltje laat bijvoorbeeld een dikker en rechter spoor na dan een relatief licht elektron. Wanneer een magneet nabij de nevelkamer wordt geplaatst zullen geladen deeltjes afbuigen als gevolg van de [[Lorentzkracht]]. Deze afbuiging is sterker naarmate de snelheid van het deeltje lager is en de lading groter. De richting van de afbuiging geeft aan of het deeltje positief of negatief geladen is.
 
=== Het positron als voorbeeld ===
De getoonde foto van het positron laat zien dat het gaat om een elektron-achtig deeltje dat echter, gezien de richting van de afbuiging van de baan, een positieve elektrische lading moet hebben. De richting van de baan is op de foto van beneden naar boven. Dit kunnen we ook zien aan de kromming van de baan; de kromming is beneden minder dan boven, wat aangeeft dat het deeltje van beneden aankwam en vervolgens een deel van zijn snelheid verloor toen het door de barrière in het midden (de dikke zwarte streep) ging.
 
[[AfbeeldingBestand:Physicist Studying Alpha Rays GPN-2000-000381.jpg|thumb|Een stuk polonium in een nevelvat straalt [[Alfastraling|alfadeeltjes]] uit in een bloemvormig patroon.]]
== Uitvinding en geschiedenis ==
Charles Wilson vond het nevelvat al in 1900 uit (In 1927 won hij de [[Nobelprijs]] voor de [[Natuurkunde]] voor zijn vinding). Hij gebruikte het instrument in eerste instantie om de vorming en eigenschappen van [[wolk]]en te bestuderen, wat de Engelse naam ''cloud chamber'' verklaart. Al gauw merkte hij echter de spoortjes op die werden nagelaten door invallende [[kosmische straling]]. In Wilsons oorspronkelijke ontwerp werd oververzadigde [[water]]damp onderkoeld door [[adiabatisch]]e expansie. Dit ontwerp laat niet toe dat de onderkoelde toestand permanent gehandhaafd blijft, omdat de damp na de adiabatische expansie weer wordt opgewarmd door de omgeving. Men spreekt daarom ook wel van een ''gepulst'' nevelvat. Latere ontwerpen handhaven de onderkoeling voor langere tijd, zodat de kamer ook langer voor waarnemingen beschikbaar is. In het in 1936 door [[Alexander Langsdorf]] ontwikkelde ''diffusienevelvat'' wordt de bodem van het vat op een lage temperatuur gehouden (bijvoorbeeld met behulp van [[koolzuursneeuw]]), terwijl bovenin bij hogere temperatuur voortdurend een damp wordt toegevoerd die onderkoeld raakt wanneer hij naar onderen zakt door [[diffusie]] of door de [[zwaartekracht]]. In zulke nevelvaten wordt vaak [[ethanol|alcoholdamp]] gebruikt in plaats van waterdamp, omdat alcoholdamp zwaarder is dan [[lucht]] en omdat de [[faseovergang]] van alcohol bij een gunstiger temperatuur plaatsvindt.
 
De werking van het in 1952 door [[Donald Glaser|Donald Arthur Glaser]] uitgevonden ''bellenvat'' is vergelijkbaar met die van het nevelvat, alleen wordt nu in plaats van een onderkoelde damp een oververhitte vloeistof gebruikt, waarin een deeltje dat met de vloeistof wisselwerkt een spoor van gasbelletjes nalaat. Het bellenvat verving het nevelvat als het belangrijkste instrument voor de detectie van kleine deeltjes. Intussen is de functie van het bellenvat vrijwel overal overgenomen door de ''dradenkamer''. Ook dit instrument maakt weer gebruik van een instabiele beginsituatie waarin een kleine verstoring als een langsvliegend elektron een groot effect kan veroorzaken.
 
== Externe links ==
* [http://www.hep.ua.ac.be/archive/meesterklas2003/Nevelkamer.html Bouw je eigen nevelvat]
* [http://www.lns.cornell.edu/~adf4/cloud.html Vergelijkbare site] (Engels)
Regel 36:
[[it:Camera a nebbia]]
[[ja:霧箱]]
[[ko:안개 상자]]
[[lv:Vilsona kamera]]
[[pl:Komora Wilsona]]