Oppervlaktetraagheidsmoment

Niet te verwarren met Statisch moment.

Het oppervlaktetraagheidsmoment of kwadratisch oppervlaktemoment, foutief ook wel kortweg traagheidsmoment genoemd, is een eigenschap van constructiedelen die de weerstand tegen doorbuiging in een bepaalde richting bepaalt.

Het oppervlaktetraagheidsmoment (dimensie m4) wordt gebruikt bij sterkteberekeningen aan constructies. Het oppervlaktetraagheidsmoment moet niet worden verward met het (massa)traagheidsmoment (dimensie kg·m²), dat betrekking heeft op rotatiebeweging. Het heeft niets te maken met het begrip traagheid.

Het oppervlaktetraagheidsmoment van een object is niet afhankelijk van het toegepaste materiaal, maar alleen van zijn vorm en afmetingen. Welk oppervlaktetraagheidsmoment men in een specifiek geval moet gebruiken is afhankelijk van de belasting.

DefinitieBewerken

Het oppervlaktetraagheidsmoment   van een doorsnede   ten opzichte van een as in het vlak van de doorsnede is gedefinieerd als:

 ,

waarin   de afstand is van het oppervlakte-element   tot de as.

Zo is in het yz-vlak het oppervlaktetraagheidsmoment ten opzichte van de z-as:

 

In sommige, op technische toepassingen gerichte, literatuur wordt   aangeduid als  

Gebruik oppervlaktetraagheidsmomentBewerken

Doorbuiging van een eenzijdig ingeklemde balkBewerken

De doorbuiging   van een balk is omgekeerd evenredig met het oppervlaktetraagheidsmoment   van betreffende balkdoorsnede en de elasticiteitsmodulus  ; bij een geschematiseerde balk met een eenzijdige inklemming (uitkragende balk), de lengte   en een puntlast   op de vrije uiteinde geldt:

 

In de werktuigbouwkunde, industriële vormgeving, civiele techniek en bouwkunde zoekt men dan ook balken met een zo hoog mogelijk traagheidsmoment in de draagrichting met een laag materiaalverbruik. Een platte balk zal vrij veel doorbuigen. Een vierkante balk heeft een hogere   en zal een stuk minder doorbuigen. Een I-profiel heeft een zeer grote  , doordat een groot deel van zijn oppervlakte op een grote afstand tot het zwaartepunt ligt. De hoogte van de balk werkt namelijk tot de 3de macht mee terwijl de breedte van de balk tot de eerste macht meewerkt (zie de formule). Voor een rechthoekige balk is dit 1/12 × breedte × hoogte tot de derde macht ( ).

Buigspanning in een balkBewerken

De buigspanning in een balk is de normaalspanning   ten gevolge van een buigmoment  . Ze is afhankelijk van de verticale afstand   tot de zwaartelijn, het buigmoment   en het oppervlaktetraagheidsmoment  . Ze wordt gegeven door de formule van Navier:

 

VoorbeeldenBewerken

In onderstaande voorbeelden is   telkens de afstand tot een as door het zwaartepunt. Met behulp van de Stelling van Steiner kan het moment rond een willekeurige as berekend worden.

Voor bijvoorbeeld een rechthoek met hoogte   en breedte   die verticaal belast wordt, is het oppervlaktetraagheidsmoment ten opzichte van een as in de breedterichting door het zwaartepunt (kies voor de berekening de oorsprong in het hoekpunt linksonder en de x-as in de breedterichting):

 
Beschrijving Oppervlaktetraagheidsmoment
rechthoek met hoogte   en breedte    
cirkel met straal    
halve cirkel met straal   op de x-as  
kwart cirkel met straal    
ellips, met lange as   en korte as    
driehoek met basis   en hoogte    

Zie ookBewerken