Inductieve verzameling

In de wiskunde is een inductieve verzameling een verzameling die de lege verzameling bevat en van elk element ook de opvolger, waarbij de opvolger van een verzameling de opvolgerverzameling is. Het oneindigheidsaxioma garandeert het bestaan van een inductieve verzameling.

DefinitieBewerken

Een verzameling   heet een inductieve verzameling, als voldaan is aan:

 

en voor alle   geldt:

 

waarin   de opvolger is van  .

VoorbeeldenBewerken

Natuurlijke getallenBewerken

Naar een idee van Richard Dedekind[1] worden de natuurlijke getallen gedefinieerd met behulp van inductieve verzamelingen.

 

Aangezien de doorsnede van inductieve verzamelingen weer inductief is, vormen de natuurlijke getallen de kleinste inductieve verzameling, bestaande uit de lege verzameling en de successieve opvolgers.

 

Transfiniete ordinaalgetallenBewerken

De transfiniete ordinaalgetallen

 

vormen ook een inductieve verzameling.

ReferentiesBewerken

  1. Richard Dedekind: Was sind und was sollen die Zahlen? Vieweg, Braunschweig 1888, § 6, 71.β