Homothetie (meetkunde)

meetkunde
(Doorverwezen vanaf Homothetie)

In de euclidische meetkunde is een homothetie, van het Oudgriekse ὃμος, hómos, gelijk en τίθημι, tithèmi, plaatsen, of vermenigvuldiging een afbeelding die vanuit een vast punt, het centrum van de vermenigvuldiging, alle afstanden in een vaste verhouding verandert. Die verhouding mag zowel positief als negatief zijn. Het origineel en het beeld, ook wel produktfiguur, heten gelijkstandige figuren.[1] Gelijkstandige figuren zijn gelijkvormig.

Voorbeeld van een homothetie: gelijkstandige vierhoeken op basis van die homothetie

De definitie van verschalen is ruimer dan die van het uitvoeren van een homothetie.

Een homothetie beeldt bijvoorbeeld elke rechte lijn af op een daarmee evenwijdige rechte lijn. Gelijkvormige figuren, die ten opzichte van elkaar iets geroteerd liggen, kunnen niet met een homothetie in elkaar worden overgevoerd.

DefinitieBewerken

Een vermenigvuldiging ten opzichte van een (reëel) punt   met (schaal)factor   is een afbeelding waarbij het punt   af op het punt   wordt afgebeeld, die aan de volgende voorwaarden voldoet:

  •   ligt op de lijn   en
  •  , waarbij het teken van   aangeeft of   en   aan dezelfde kant van   ( ) of aan weerszijden van   ( ) liggen.

Een gevolg is dat   op zichzelf wordt afgebeeld.

EigenschappenBewerken

 
Gelijkvormigheidscentra   en   bij twee cirkels
  • Het beeld van een homothetie en het origineel heten gelijkvormig. Dit volgt uit de gelijkstandigheid van beide figuren.
  • Een homothetie beeldt een veelhoek af op een veelhoek waarvan de zijden evenwijdig zijn met die van het origineel.
  • Zijn van twee gelijkvormige veelhoeken de zijden evenwijdig, dan is er een homothetie die de ene veelhoek op de andere afbeeldt. Het punt   wordt dan het gelijkvormigheidscentrum van beide figuren genoemd. Voor twee gelijkvormige puntsymmetrische veelhoeken met evenwijdige zijden of voor twee cirkels bestaan in bepaalde gevallen twee homothetieën. In die gevallen bestaan er dus ook twee gelijkvormigheidscentra. De punten   en   zijn in het voorbeeld in figuur de gelijkvormigheidscentra.
  • Een homothetie met factor   beeldt een veelhoek met oppervlakte   af op een veelhoek met oppervlakte  .