In de wiskunde is de grote-O-notatie, ook het grote-O-symbool, een van de Landau-symbolen waarmee op compacte wijze aangegeven kan worden dat een functie asymptotisch gedomineerd wordt door een andere functie. Meestal is de dominerende functie van een eenvoudige vorm, zodat een overzichtelijke indruk verkregen wordt van het asymptotische gedrag van de doelfunctie.

Een andere manier om het asymptotische gedrag van de ene functie te vergelijken met een andere functie is het bepalen van de relevante limiet van het quotiënt . Bij de grote-O-notatie gaat het slechts om een ongelijkheid, dus dat is een zwakkere eigenschap.

Definitie

bewerken

Men zegt dat de functie   zich voor   gedraagt als grote O van  , en noteert

 

of

 ,

als er een positief getal   en een getal   is, zodanig dat voor   geldt

 

Dit houdt in dat voor voldoend grote     in absolute waarde begrensd wordt door  .

Analoog wordt de notatie gebruikt om het gedrag van   in de buurt van een punt   te karakteriseren.

 

of

 ,

als er positieve getallen   zijn, zodanig dat voor   geldt

 

Dit houdt in dat voor waarden van   in de buurt van     in absolute waarde begrensd wordt door  .

Notatie

bewerken

De notatie met het '='-teken is historisch bepaald, maar maakt eigenlijk misbruik van dat teken. In wezen wordt in de uitspraak: "  is  " het woordje 'is' als '=' geschreven. De modernere notatie met ' '-teken is daarentegen wel correct, als met   de verzameling functies aangeduid wordt die de bedoelde eigenschap bezitten. Deze verzameling functies is een lineaire ruimte, zoals eenvoudig aangetoond kan worden.

Met   wordt bedoeld  .

Geschiedenis

bewerken

Het symbool (grote) O, dat een afkorting is van 'orde', werd voor het eerst gebruikt door de Duitse getaltheoreticus Paul Bachmann in de in 1894 verschenen 2e druk van zijn boek Analytische Zahlentheorie. Bekendheid kreeg de notatie door de eveneens Duitse getaltheoreticus Edmund Landau, wiens naam met de symboliek verbonden is.

Voorbeelden

bewerken

Asymptotisch geldt:

 ,

wat ook te begrijpen is, omdat voor grote   de term met de hoogste macht,  , overheerst.

Met de grote-O notatie kan de restterm beschreven worden in de benadering van een functie.

 

waarmee uitgedrukt wordt dat het verschil   voor waarden van   dicht bij 0 en zekere   kleiner is dan  .

Informatica

bewerken

De notatie wordt in de informatica gebruikt om de (tijds)complexiteitsgraad van algoritmen uit te drukken in termen van een geheel getal als parameter, waarbij het gaat om het aantal elementaire bewerkingen als functie hiervan, als de parameter naar oneindig gaat. Deze notatie is een 'slechtste-geval' maat. Ze geeft enkel informatie over het maximaal aantal elementaire bewerkingen dat een algoritme bij gegeven invoergrootte zal uitvoeren. De notatie is machine-onafhankelijk.

Algoritmen met een complexiteit   en   de invoergrootte, heten polynomiaal. Algoritmen met een complexiteit  ,   heten exponentieel. Merk opnieuw op dat polynomiale algoritmen exponentieel zijn, maar omgekeerd niet.

Merk op dat   tevens   impliceert. Immers als het algoritme trager of gelijk aan   groeit, dan zeker trager dan  . Dit is algemeen geldig in de grote-O-notatie: een lagere complexiteit impliceert een hogere complexiteit.

Veel voorkomende ordes voor functies zijn, in volgorde van stijgende complexiteit:

O-notatie Naam Omschrijving Voorbeelden
  constant tijd onafhankelijk van de grootte van het probleem, dus is de tijd om het op te lossen nooit meer dan een bepaalde bovengrens, ook al is het probleem nog zo groot
  • Bepalen of een binair getal even of oneven is
  • (-1)n berekenen
  • Een opzoektabel met constante grootte gebruiken
  logaritmisch evenredig aan logaritme van  , als   10 maal zo groot wordt, neemt de tijd met een constante toe
  lineair tijd evenredig aan  
  • Een item opzoeken in een ongeordende lijst
  loglineair tijd evenredig aan  
  kwadratisch tijd neemt kwadratisch toe met de grootte van het probleem
  • Twee getallen met n cijfers vermenigvuldigen zoals op school
  • Simpele sorteeralgoritmen zoals bubblesort
  exponentieel tijd neemt exponentieel toe met de grootte van het probleem
  factorieel tijd is evenredig met n faculteit