Exacte rij

In de wiskunde, in het bijzonder in het deelgebied van de theorie van ringen en modulen, de homologische algebra alsook de differentiaalmeetkunde en de groepentheorie, is een exacte rij een zodanige eindige of oneindige volgorde van objecten en morfismen daartussen, dat het beeld van een morfisme gelijk is aan de kern van het volgende morfisme.

DefinitieBewerken

De eenvoudigste vorm van een exacte rij is de opeenvolging van objecten   en morfismen   daartussen

 

waarin het beeld van   onder   de kern is van  :

 

Een langere opeenvolging van objecten (eventueel oneindig, zowel naar links als naar rechts) en morfismen daartussen:

 

heet een exacte rij als elk kort deel daarin exact is.

Korte exacte rijBewerken

Het meest voorkomend is de korte exacte rij

 ,

waarin   een monomorfisme en   een epimorfisme is.

Een korte exacte rij van abelse groepen kan ook geschreven worden als een exacte rij met vijf objecten:

 ,

waarin 0 een begin- en eindobject voorstelt, zoals de triviale groep of een vectorruimte van dimensie 0. Door begin- en eindobject op te nemen in de exacte rij, is   noodzakelijk een monomorfisme en   noodzakelijk een epimorfisme.

Als de objecten groepen zijn waarvan men niet weet of ze abels zijn, is het gebruikelijk de groepsoperaties als vermenigvuldiging te schrijven. Het identiteitselement wordt dan als 1 genoteerd, evenals de triviale groep. Een korte exacte rij kan dan genoteerd worden als: