Betegeling

Een betegeling of tessellatie van een vlak is een manier om dat vlak met tegels te bedekken zonder dat sommige tegels elkaar mogen overlappen. MC Escher maakte in zijn kunst veel gebruik van betegelingen. We zien door de hele kunstgeschiedenis, van de architectuur uit de oudheid tot in de moderne kunst, betegelingen terugkomen. Een voorbeeld van een betegeling is de regelmatige manier waarop geglazuurde tegels op de vloer zijn gelegd. Men spreekt ook van betegelingen van delen van een vlak, in meer dimensies en in een hyperbolisch vlak.

Betegelde straat

In het Latijn was een tessella een klein kubusvormig stukje van klei, steen of glas dat werd gebruikt om mozaïeken te leggen.[1] Tessella, van tessera, betekent 'klein vierkant' en komt van het Oudgriekse τέσσερα, dat vier betekent.

Er is een verschil tussen betegelingen met en zonder translatiesymmetrie, maar het aantal betegelingen met translatiesymmetrie is veel groter dan het aantal zonder. Wanneer het niet anders wordt vermeld, gaat het om betegelingen met translatiesymmetrie.

Twee dimensiesBewerken

DefinitiesBewerken

Een betegeling heet regelmatig als alle veelhoeken of tegels congruent zijn.

  • Een betegeling is hoekpunttransitief of isogonaal als er voor elk tweetal hoekpunten P, Q van de betegeling een isometrie bestaat die de betegeling op zichzelf afbeeldt en daarbij P op Q afbeeldt. Een nodige voorwaarde is dat in alle hoekpunten dezelfde soorten veelhoeken bij elkaar komen, in dezelfde of omgekeerde cyclische volgorde.
  • Een betegeling is vlaktransitief of isohedraal als er voor elk tweetal veelhoeken V, W van de betegeling een isometrie bestaat die de betegeling op zichzelf afbeeldt en daarbij V op W afbeeldt. De isohedrale en de regelmatige betegelingen zijn hetzelfde.

Een betegeling is uniform als alle tegels uitsluitend regelmatige veelhoeken zijn en de betegeling hoekpunttransitief is. De hoekpuntconfiguratie geeft daarbij aan welke veelhoeken in een hoekpunt samenkomen, bijvoorbeeld 4.8.8 als steeds een vierkant en twee regelmatige achthoeken samenkomen. Een uniforme betegeling is halfregelmatig als deze niet regelmatig is.

Regelmatige betegelingBewerken

Er zijn behoudens isometrie en schaling drie regelmatige betegelingen, namelijk die met de hoekpuntconfiguratie 3.3.3.3.3.3, 4.4.4.4 en 6.6.6:

 
met gelijkzijdige driehoeken
 
met vierkanten
 
met regelmatige zeshoeken, de honingraatstructuur

De eerste en derde zijn elkaars duale, de middelpunten van de veelhoeken van de een zijn behoudens schaling en rotatie de hoekpunten van de ander, de tweede is zelfduaal. De eerste en derde hebben dezelfde symmetriegroep.

Het aantal  -hoeken die in elk hoekpunt bij elkaar komen, is

 

Bij een regelmatige vlakvulling met regelmatige  -hoeken moet 4 dus door   kunnen worden gedeeld. Dat geeft voor   de mogelijkheden 3, 4 en 6.

De verhouding van het aantal hoekpunten, het aantal zijden en het aantal  -hoeken is  . Dat is voor gelijkzijdige driehoeken, vierkanten en regelmatige zeshoeken 1:3:2, 1:2:1 en 2:3:1.

Uniforme betegelingBewerken

Er bestaan elf verschillende uniforme betegelingen, waarvan er drie regelmatig zijn en acht halfregelmatig. De acht halfregelmatige betegelingen staan hieronder afgebeeld.

Betegeling met identieke tegelsBewerken

Betegelingen met identieke tegels kunnen met drie-, vier-, vijf- en zeshoeken worden gemaakt. Met alle drie- en vierhoeken kan het vlak worden gevuld. Er zijn tot nu toe vijftien convexe vijfhoeken gevonden waarmee het vlak kan worden gevuld, maar er zijn er mogelijk nog meer. Het is bewezen dat er drie soorten zeshoeken zijn waarmee het vlak kan worden gevuld, maar dat er geen veelhoeken met meer dan zes hoeken zijn, waarmee het mogelijk is.[2]

BehangpatroongroepenBewerken

Betegelingen met translatiesymmetrie kunnen worden gecategoriseerd door behangpatroongroepen. Hiervan bestaan er precies 17. Alle zeventien van deze patronen zijn teruggevonden in het Alhambra in Granada in Spanje. Van de drie regelmatige betegelingen vallen er twee in de categorie p6m en een in de categorie p4m.

Als een oneindige figuur uit punten verbonden door lijnstukken bestaat, dan is het aantal lijnstukken gelijk aan het aantal punten plus het aantal veelhoeken waarin het vlak wordt verdeeld. De eulerkarakteristiek van een oneindig vlak is nul.

Drie dimensiesBewerken

Het is mogelijk veelvlakken in drie dimensies zonder ruimteverlies te stapelen. Met een beperkt aantal veelvlakken, waarbij gelijkvormige veelvlakken ook congruent zijn, zijn er de volgende mogelijkheden.

ruimtevulling in drie dimensies'
nummer veelvlakken afbeelding
regelmatige veelvlakken en archimedische lichamen
1 achtvlak en viervlak  
2 kuboctaëder en achtvlak  
3 kubus  
4 romboëdrisch kuboctaëder, kubus en viervlak  
5 romboëdrisch kuboctaëder, kuboctaëder en kubus  
6 afgeknotte octaëder  
7 afgeknotte tetraëder en viervlak  
8 afgeknotte octaëder, afgeknotte tetraëder en kuboctaëder  
9 grote rombische kuboctaëder, afgeknotte octavlak en kubus  
10 afgeknotte kubus en achtvlak  
11 afgeknotte kubus, grote rombische kuboctaëder en afgeknotte tetraëder  
rombische dodecaëders
12 rombische dodecaëder  
archimedische lichamen en prisma's
13 grote rombische kuboctaëder en achtprisma  

Zonder translatiesymmetrieBewerken

De Penrose-betegelingen zijn de bekendste betegelingen in twee dimensies zonder translatiesymmetrie, maar die zijn wel rotatiesymmetrisch. Betegelingen zonder translatiesymmetrie kunnen als model voor de structuur van quasikristallen worden gebruikt. Dit werd in 1982 door D Shechtman ontdekt.

WetenswaardighedenBewerken

  • De Tessella zijn ook een geslacht van vlinders.
  Zie de categorie Tilings van Wikimedia Commons voor mediabestanden over dit onderwerp.